G. F. N. Gonçalves et al., “Data-driven surrogate modeling and benchmarking for process equipment,” Data-Centric Eng., vol. 1, pp. 1–19, 2020
G. D. Ranasinghe, T. Lindgren, M. Girolami, and A. K. Parlikad, “A Methodology for Prognostics under the Conditions of Limited Failure Data Availability,” IEEE Access, vol. 7, 2019
L. Kahouadji et al., “A numerical investigation of three-dimensional falling liquid films,” Environ. Fluid Mech., vol. 22, no. 2–3, 2022
C. E. Heaney et al., “An AI-based non-intrusive reduced-order model for extended domains applied to multiphase flow in pipes,” Phys. Fluids, vol. 34, no. 5, 2022
M. Cheng, F. Fang, I. M. Navon, and C. C. Pain, “A real-time flow forecasting with deep convolutional generative adversarial network: Application to flooding event in Denmark,” Phys. Fluids, vol. 33, no. 5, 2021
T. R. F. Phillips, C. E. Heaney, P. N. Smith, and C. C. Pain, “An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion,” Int. J. Numer. Methods Eng., vol. 122, no. 15, 2021
S. Paul et al., “Analysis and control of vapor bubble growth inside solid-state nanopores,” J. Therm. Sci. Technol., vol. 16, no. 1, 2021
F. Hossein, M. Materazzi, P. Lettieri, and P. Angeli, “Application of acoustic techniques to fluid-particle systems – A review,” Chemical Engineering Research and Design, vol. 176. 2021
C. E. Heaney, Y. Li, O. K. Matar, and C. C. Pain, “Applying Convolutional Neural Networks to Data on Unstructured Meshes with Space-Filling Curves,” 2020
M. Kalli, L. Chagot, and P. Angeli, “Comparison of surfactant mass transfer with drop formation times from dynamic interfacial tension measurements in microchannels,” J. Colloid Interface Sci., vol. 605, 2022
J. Chen et al., “Computational fluid dynamics simulations of phase separation in dispersed oil-water pipe flows,” Chem. Eng. Sci., vol. 267, p. 118310, 2023
P. K. Inguva, P. J. Walker, H. W. Yew, K. Zhu, A. J. Haslam, and O. K. Matar, “Continuum-scale modelling of polymer blends using the Cahn-Hilliard equation: transport and thermodynamics,” Soft Matter, vol. 17, no. 23. 2021
J. P. Valdés, L. Kahouadji, and O. K. Matar, “Current advances in liquid–liquid mixing in static mixers: A review,” Chemical Engineering Research and Design, vol. 177. 2022
C. E. Heaney, Y. Li, and C. C. Pain, Data Assimilation Predictive GAN ( DA-PredGAN ) Applied to a Spatio-Temporal Compartmental Model in Epidemiology, vol. 123. Springer US, 2023
Cheng, M., Fang, F., Pain, C. C., & Navon, I. M. (2020). Data-driven modelling of nonlinear spatio-temporal fluid flows using a deep convolutional generative adversarial network. Computer Methods in Applied Mechanics and Engineering.
Z. Titus, C. Heaney, C. Jacquemyn, P. Salinas, M. Jackson, and C. Pain, “Conditioning surface-based geological models to well data using artificial neural networks,” Comput. Geosci., vol. 26, no. 4, 2022
C. Buizza et al., “Data Learning: Integrating Data Assimilation and Machine Learning,” J. Comput. Sci., vol. 58, 2022
Constante-Amores, C. R., Kahouadji, L., Batchvarov, A., Shin, S., Chergui, J., Juric, D., & Matar, O. K. (2021a). Direct numerical simulations of transient turbulent jets: Vortex-interface interactions. Journal of Fluid Mechanics.
Constante-Amores, C. R., Kahouadji, L., Batchvarov, A., Shin, S., Chergui, J., Juric, D., & Matar, O. K. (2021). Dynamics of a surfactant-laden bubble bursting through an interface. Journal of Fluid Mechanics, 911, 1–10.
Constante-Amores, Cristian R., Kahouadji, L., Batchvarov, A., Shin, S., Chergui, J., Juric, D., & Matar, O. K. (2020). Dynamics of retracting surfactant-laden ligaments at intermediate Ohnesorge number. Physical Review Fluids, 5(8), 1–24.
Kovalchuk, N., Alberini, F., & Simmons, M. J. H. (2020). Effect of moderate DC electric field on formation of surfactant-laden drops. Chemical Engineering Research and Design, 157, 133–141.
I. Kiratzis, N. M. Kovalchuk, M. J. H. Simmons, and D. Vigolo, “Effect of surfactant addition and viscosity of the continuous phase on flow fields and kinetics of drop formation in a flow-focusing microfluidic device,” Chem. Eng. Sci., vol. 248, 2022
Kovalchuk, N. M., & Simmons, M. J. H. (2021a). Effect of Surfactant Dynamics on Flow Patterns Inside Drops Moving in Rectangular Microfluidic Channels. Colloids and Interfaces, 5(3).
T. Kadeethum et al., “Enhancing high-fidelity nonlinear solver with reduced order model,” Sci. Rep., vol. 12, no. 1, pp. 1–15, 2022
Batchvarov, A., Kahouadji, L., Magnini, M., Constante-Amores, C. R., Shin, S., Chergui, J., Juric, D., Craster, R. V., & Matar, O. K. (2020). Effect of surfactant on elongated bubbles in capillary tubes at high Reynolds number. Physical Review Fluids.
Moran, H. R., Magnini, M., Markides, C. N., & Matar, O. K. (2021). Inertial and buoyancy effects on the flow of elongated bubbles in horizontal channels. International Journal of Multiphase Flow.
H. Rappel, M. Girolami, and L. A. A. Beex, “Intercorrelated random fields with bounds and the Bayesian identification of their parameters: Application to linear elastic struts and fibers,” Int. J. Numer. Methods Eng., vol. 123, no. 15, 2022
R. Maulik, T. Botsas, N. Ramachandra, L. R. Mason, and I. Pan, “Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation,” Phys. D Nonlinear Phenom., vol. 416, 2021
H. A. Abubakar and O. K. Matar, “Linear stability analysis of Taylor bubble motion in downward flowing liquids in vertical tubes,” J. Fluid Mech., vol. 941, pp. 1–37, 2022
G. F. N. Gonçalves and O. K. Matar, “Mechanistic modelling of two-phase slug flows with deposition,” Chem. Eng. Sci., vol. 259, 2022
C. Quilodrán-Casas, V. L. S. Silva, R. Arcucci, C. E. Heaney, Y. K. Guo, and C. C. Pain, “Digital twins based on bidirectional LSTM and GAN for modelling the COVID-19 pandemic,” Neurocomputing, vol. 470, 2022
T. R. F. Phillips et al., “Multi-Output Regression with Generative Adversarial Networks (MOR-GANs),” Appl. Sci., vol. 12, no. 18, 2022
Inguva, P., Mason, L. R., Pan, I., Hengardi, M., & Matar, O. K. (2020). Numerical simulation, clustering, and prediction of multicomponent polymer precipitation. Data-Centric Engineering.
Farooq, U., Stafford, J., Petit, C., & Matar, O. K. (2020). Numerical simulations of a falling film on the inner surface of a rotating cylinder. Physical Review E, 102(4), 1–18.
Matar, O. K., & Pain, C. C. (2021). Prediction of multiphase flows with sharp interfaces using anisotropic mesh optimisation. Advances in Engineering Software, 160(March).
F. Liang et al., “Numerical study of oil-water emulsion formation in stirred vessels: effect of impeller speed,” Flow Meas. Instrum., vol. 2, 2022
T. R. F. Phillips, C. E. Heaney, B. S. Tollit, P. N. Smith, and C. C. Pain, “Reduced-order modelling with domain decomposition applied to multi-group neutron transport,” Energies, vol. 14, no. 5, 2021
Constante-Amores, C. R., Kahouadji, L., Batchvarov, A., Shin, S., Chergui, J., Juric, D., & Matar, O. K. (2020). Rico and the jets: Direct numerical simulations of turbulent liquid jets. Physical Review Fluids.
C. E. Heaney, A. G. Buchan, C. C. Pain, and S. Jewer, “Reduced-order modelling applied to the multigroup neutron diffusion equation using a nonlinear interpolation method for control-rod movement,” Energies, vol. 14, no. 5, 2021
E. A. de. R. Chanona, P. Petsagkourakis, E. Bradford, J. E. A. Graciano, and B. Chachuat, “Real-time optimization meets Bayesian optimization and derivative-free optimization: A tale of modifier adaptation,” Comput. Chem. Eng., vol. 147, 2021
C. R. Constante-Amores et al., “Role of surfactant-induced Marangoni stresses in drop-interface coalescence,” J. Fluid Mech., vol. 925, 2021
M. Cheng et al., “Spatio-Temporal Hourly and Daily Ozone Forecasting in China Using a Hybrid Machine Learning Model: Autoencoder and Generative Adversarial Networks,” J. Adv. Model. Earth Syst., vol. 14, no. 3, 2022
L. Chagot et al., “Surfactant-laden droplet size prediction in a flow-focusing microchannel: a data-driven approach,” Lab Chip, p., 2022
R. K. Nazareth, G. Karapetsas, K. Sefiane, O. K. Matar, and P. Valluri, “Stability of slowly evaporating thin liquid films of binary mixtures,” Phys. Rev. Fluids, vol. 5, no. 10, 2020
Kovalchuk, N. M., Sagisaka, M., Osaki, S., & Simmons, M. J. H. (2020). Superspreading performance of branched ionic trimethylsilyl surfactant Mg(AOTSiC)2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604(July), 125277.
Kovalchuk, N. M., & Simmons, M. J. H. (2021). Surfactant-mediated wetting and spreading: Recent advances and applications. Current Opinion in Colloid and Interface Science, 51.
L. Kahouadji et al., “The transition to aeration in turbulent two-phase mixing in stirred vessels,” Flow, vol. 2, 2022
J. Povala, I. Kazlauskaite, E. Febrianto, F. Cirak, and M. Girolami, “Variational Bayesian approximation of inverse problems using sparse precision matrices,” Comput. Methods Appl. Mech. Eng., vol. 393, 2022
Batchvarov, A., Kahouadji, L., Constante-Amores, C. R., Norões Gonçalves, G. F., Shin, S., Chergui, J., Juric, D., Craster, R. V., & Matar, O. K. (2020). Three-dimensional dynamics of falling films in the presence of insoluble surfactants. Journal of Fluid Mechanics, 1996, 1–10.
S. H. Hue, L. Chagot, and P. Angeli, “Viscoelastic effects of immiscible liquid-liquid displacement in microchannels with bends,” Phys. Fluids, vol. 34, no. 7, 2022